

Welcome to Normalization’s documentation!

	Installation

	Loading
	Loading via folders

	Loading via individual file name

	Loading via list file names

	Loading via arrays

	Dark Field Correction

	Normalization
	Normalization using ROI (optional)

	Normalization without ROI (optional)

	Cropping Data

	Retrieve Normalized Data

	Export Data

	Using library from a Notebook

Indices and tables

	Index

	Module Index

	Search Page

Installation

First you need to install the NeuNorm library

$ pip install NeuNorm

Then in your python environment, import

>>> import NeuNorm as neunorm
>>> from NeuNorm.normalization import Normalization
>>> from NeuNorm.roi import ROI

Loading

Loading via folders

Let’s pretend that our images are in the folder /Users/me/sample/ and named

	image001.fits

	image002.fits

	image003.fits

>>> sample_folder = '/Users/me/sample/'
>>> o_norm = Normalization()
>>> o_norm.load(folder=sample_folder)

At this point all the data have been loaded in memory and can be accessed as followed

>>> image001 = o_norm.data['sample']['data'][0]
>>> image002 = o_norm.data['sample']['data'][1]

and the file names

>>> image003_file_name = o_norm.data['sample']['file_name'][2]

Let’s now load the rest of our data, the OB and the DF

Our OB are in the folder /Users/me/ob/ and named

	ob001.fits

	ob002.fits

	ob003.fits

>>> o_norm.load(folder='/Users/me/ob', data_type='ob')

again, all the data can be retrieved as followed

>>> ob1 = o_norm.data['ob']['data'][0]
>>> ob2_file_name = o_norm.data['ob']['file_name'][1]

For this library, DF are optional but for the sake of this exercise, let’s load them

>>> o_norm.load(folder='/Users/me/df', data_type='df')

By default, a gamma filtering will take place when you load your data. You can manually turn off
this filtering by adding the following False flag

>>> o_norm.load(folder='/Users/me/df', data_type='df', gamma_filter=False)

The gamma filtering is an algorithm that replaces all the very bright pixel counts with the average value
of the 8 neighbors. What do we mean by very bright? The pixel counts that have 10% of their value above the average
counts of the entire image. The threshold value can be change by doing

>>> o_norm.gamma_filter_threshold = 0.2

WARNING:
#1 From this point, any operation on your data will overwrite the inital data loaded. Those
data can be retrieved at any point by doing
#2 The program won’t let you run the same algorithm twice (normalization, df_correction,
oscillation, rebin). But it’s possible to overwrite this option by making a flag force
equal to True. Use this feature at your own risk!

>>> data = o_norm.data['sample']['data']
>>> ob = o_norm.data['ob']['data']

Loading via individual file name

Let’s pretend that our images are in the folder /Users/me/sample/ and named

	image001.fits

	image002.fits

	image003.fits

>>> o_norm = Normalization()
>>> o_norm.load(file='/Users/me/sample/image001.fits')
>>> o_norm.load(file='/Users/me/sample/image002.fits')
>>> o_norm.load(file='/Users/me/sample/image003.fits')

At this point all the data have been loaded in memory and can be accessed as followed

>>> image001 = o_norm.data['sample']['data'][0]
>>> image002 = o_norm.data['sample']['data'][1]

and the file names

>>> image003_file_name = o_norm.data['sample']['file_name'][2]

Let’s now load the rest of our data, the OB and the DF

Our OB are in the folder /Users/me/ob/ and named

	ob001.fits

	ob002.fits

	ob003.fits

>>> o_norm.load(file='/Users/me/ob/ob001.fits', data_type='ob')
>>> o_norm.load(file='/Users/me/ob/ob002.fits', data_type='ob')
>>> o_norm.load(file='/Users/me/ob/ob003.fits', data_type='ob')

again, all the data can be retrieved as followed

>>> ob1 = o_norm.data['ob']['data'][0]
>>> ob2_file_name = o_norm.data['ob']['file_name'][1]

For this library, DF are optional but for the sake of this exercise, let’s load them

	df001.fits

	df002.fits

>>> o_norm.load(file='/Users/me/df/df001.fits', data_type='df')
>>> o_norm.load(file='/Users/me/df/df002.fits', data_type='df')

By default, a gamma filtering will take place when you load your data. You can manually turn off
this filtering by adding the following False flag

>>> o_norm.load(file='/Users/me/df/df002.fits', data_type='df', gamma_filter=False)

The gamma filtering is an algorithm that replaces all the very bright pixel counts with the average value
of the 8 neighbors. What do we mean by very bright? The pixel counts that have 10% of their value above the average
counts of the entire image. The threshold value can be change by doing

>>> o_norm.gamma_filter_threshold = 0.2

WARNING:
#1 From this point, any operation on your data will overwrite the inital data loaded. Those
data can be retrieved at any point by doing
#2 The program won’t let you run the same algorithm twice (normalization, df_correction,
oscillation, rebin). But it’s possible to overwrite this option by making a flag force
equal to True. Use this feature at your own risk!

>>> data = o_norm.data['sample']['data']
>>> ob = o_norm.data['ob']['data']

Loading via list file names

Let’s pretend that our images are in the folder /Users/me/sample/ and named

	image001.fits

	image002.fits

	image003.fits

But from this list, we only want to load image001 and image002. It is possible to specify a list of
file names to load

>>> o_norm = Normalization()
>>> list_files = ['/Users/me/sample/image001.fits', '/Users/me/sample/image002.fits']
>>> o_norm.load(file=list_files)

At this point all the data have been loaded in memory and can be accessed as followed

>>> image001 = o_norm.data['sample']['data'][0]
>>> image002 = o_norm.data['sample']['data'][1]

and the file names

>>> image002_file_name = o_norm.data['sample']['file_name'][1]

Let’s now load the rest of our data, the OB and the DF

Our OB are in the folder /Users/me/ob/ and named

	ob001.fits

	ob002.fits

>>> list_ob = [/Users/me/ob/ob001.fits', '/Users/me/ob/ob002.fits']
>>> o_norm.load(file=list_ob, data_type='ob')

again, all the data can be retrieved as followed

>>> ob1 = o_norm.data['ob']['data'][0]
>>> ob2_file_name = o_norm.data['ob']['file_name'][1]

For this library, DF are optional but for the sake of this exercise, let’s load them

	df001.fits

	df002.fits

>>> list_df = ['/Users/me/df/df001.fits', '/Users/me/df/df002.fits']
>>> o_norm.load(file=list_df, data_type='df')

By default, a gamma filtering will take place when you load your data. You can manually turn off
this filtering by adding the following False flag

>>> o_norm.load(file=list_df, data_type='df', gamma_filter=False)

The gamma filtering is an algorithm that replaces all the very bright pixel counts with the average value
of the 8 neighbors. What do we mean by very bright? The pixel counts that have 10% of their value above the average
counts of the entire image. The threshold value can be change by doing

>>> o_norm.gamma_filter_threshold = 0.2

WARNING:
#1 From this point, any operation on your data will overwrite the inital data loaded. Those
data can be retrieved at any point by doing
#2 The program won’t let you run the same algorithm twice (normalization, df_correction,
oscillation, rebin). But it’s possible to overwrite this option by making a flag force
equal to True. Use this feature at your own risk!

>>> data = o_norm.data['sample']['data']
>>> ob = o_norm.data['ob']['data']

Loading via arrays

Let’s pretend that our images are in the folder /Users/me/sample/ and named

	image001.tif

	image002.tif

	image003.tif

In order to load the arrays, we first need to load ourselves the data

>>> data = []
>>> from PIL import Image
>>> _data1 = Image.open('/Users/me/sample/image001.tif')
>>> data.append(_data1)
>>> _data2 = Image.open('/Users/me/sample/image002.tif')
>>> data.append(_data2)
>>> _data3 = Image.open('/Users/me/sample/image003.tif')
>>> data.append(_data3)

Now, we can load the data

>>> o_norm = Normalization()
>>> o_norm.load(data=data)

At this point all the sample data have been loaded in memory and can be accessed as followed

>>> image001 = o_norm.data['sample']['data'][0]
>>> image002 = o_norm.data['sample']['data'][1]

and the file names

>>> image003_file_name = o_norm.data['sample']['file_name'][2]

Let’s now load the rest of our data, the OB and the DF

Our OB are in the folder /Users/me/ob/ and named

	ob001.tif

	ob002.tif

	ob003.tif

>>> _ob1 = Image.open('/Users/me/sample/ob001.tif')
>>> o_norm.load(data=_ob1, data_type='ob')
>>> _ob2 = Image.open('/Users/me/sample/ob002.tif')
>>> o_norm.load(data=_ob2, data_type='ob')
>>> _ob3 = Image.open('/Users/me/sample/ob003.tif')
>>> o_norm.load(data=_ob3, data_type='ob')

again, all the data can be retrieved as followed

>>> ob1 = o_norm.data['ob']['data'][0]
>>> ob2_file_name = o_norm.data['ob']['file_name'][1]

For this library, DF are optional but for the sake of this exercise, let’s load them

	df001.tif

	df002.tif

>>> _df1 = Image.open('/Users/me/sample/df001.tif')
>>> o_norm.load(data=_df1, data_type='df')
>>> _df2 = Image.open('/Users/me/sample/df002.tif')
>>> o_norm.load(data=_df2, data_type='df')

By default, a gamma filtering will take place when you load your data. You can manually turn off
this filtering by adding the following False flag

>>> o_norm.load(data=_df2, data_type='df', gamma_filter=False)

The gamma filtering is an algorithm that replaces all the very bright pixel counts with the average value
of the 8 neighbors. What do we mean by very bright? The pixel counts that have 10% of their value above the average
counts of the entire image. The threshold value can be change by doing

>>> o_norm.gamma_filter_threshold = 0.2

WARNING:
#1 From this point, any operation on your data will overwrite the inital data loaded. Those
data can be retrieved at any point by doing
#2 The program won’t let you run the same algorithm twice (normalization, df_correction,
oscillation, rebin). But it’s possible to overwrite this option by making a flag force
equal to True. Use this feature at your own risk!

>>> data = o_norm.data['sample']['data']
>>> ob = o_norm.data['ob']['data']

Dark Field Correction

If you loaded a set of Dark Field (DF) images, you probably want to correct all your
images (sample and OB) for dark field correction

>>> o_norm.df_correction()

In case you did not loaded a set of DF, this correction will leave the images untouched

Normalization

Normalization using ROI (optional)

If you want to specify a region of your sample to match with the OB

Let’s use the following region

	x0 = 10

	y0 = 10

	x1 = 50

	y1 = 50

>>> my_norm_roi = ROI(x0=10, y0=10, x1=50, y1=50)

then the normalization can be run

>>> o_norm.normalization(roi=my_norm_roi)

Normalization without ROI (optional)

If you don’t want any normalization ROI, simply run the normalization

>>> o_norm.normalization()

How to get the normalized data

Each of the data set in the sample and ob will then be normalized.
If a norm_roi has been provided, the sample arrays will be divided by the average of the
region defined. Same thing for the ob. Those normalized array can be retrieved this way

>>> sample_normalized_array = o_norm.data['sample']['data']
>>> ob_normalized_array = o_gretting.data['ob']['data']

Cropping Data

You have the option to crop the data but if you do, this must be done after running the normalization.
The algorithm only cropped the normalized sample and ob data

	the 4 corners of the region of interest (ROI)

	the top left corner coordinates, width and height of the ROI

let’s use the first method and let’s pretend the ROI is defined by

	x0 = 5

	y0 = 5

	x1 = 200

	y1 = 250

>>> my_crop_roi = ROI(x0=5, y0=5, x1=200, y1=250)
>>> o_norm.crop(roi=my_crop_roi)

Retrieve Normalized Data

The sample/OB normalized data can be recovered this way

>>> normalized_data = neunorm.data['normalized']

You can retrieve the data using either this way

>>> sample = o_norm.data['sample']['data']
>>> ob = o_norm.data['ob']['data']
>>> df = o_norm.data['df']['data']
>>> norm = o_norm.data['normalization']

or

>>> sample = o_norm.get_sample_data()
>>> ob = o_norm.get_ob_data()
>>> df = o_norm.get_df_data()
>>> normalized = o_norm.get_normalized_data()

Export Data

It is possible to export any of the data you worked on (sample, ob, df or normalized) either
as a ‘tif’ or as a ‘fits’ file (default being ‘tif’)

>>> output_folder = '/users/my_output_folder'
>>> o_norm.export(folder=output_folder, data_type='normalized', file_type='tif')

or if you prefer ‘fits’

>>> o_norm.export(folder=output_folder, data_type='normalized', file_type='fits')

Using library from a Notebook

If you run the library from a notebook, you have the option to display a progress bar showing you the progress
of the loading or normalization processes (NB: progress bar will not show up when loading one file at a time)

>>> sample_folder = '/Users/me/sample/'
>>> o_norm = Normalization()
>>> o_norm.load(folder=sample_folder, notebook=True)

[image: typical attenuation plot]
or during normalization

>>> o_norm.normalization(notebook=True)

[image: typical attenuation plot]

Index

 _static/comment-close.png

_images/progress_bar_loading.png
Loading ob

_images/progress_bar_normalization.png
Normalization

_static/progress_bar_loading.png
Loading ob

_static/up.png

_static/minus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/progress_bar_normalization.png
Normalization

nav.xhtml

 Table of Contents

 		Welcome to Normalization's documentation!

 		Installation

 		Loading

 		Loading via folders

 		Loading via individual file name

 		Loading via list file names

 		Loading via arrays

 		Dark Field Correction

 		Normalization

 		Normalization using ROI (optional)

 		Normalization without ROI (optional)

 		Cropping Data

 		Retrieve Normalized Data

 		Export Data

 		Using library from a Notebook

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

